ASPPH logo

Connect

Member Research & Reports

Member Research & Reports

Columbia Study Finds Chronic Fatigue Syndrome Linked to Imbalanced Microbiome

Scientists at the Center for Infection and Immunity (CII) at Columbia University’s Mailman School of Public Health have discovered abnormal levels of specific gut bacteria related to chronic fatigue syndrome/myalgic encephalomyelitis, or ME/CFS, in patients with and without concurrent irritable bowel syndrome, or IBS. Findings are published in the journal Microbiome.

 
[Photo: Dr. Dorottya Nagy-Szakal (left) and Dr. Brent L. Williams]

The study is among the first to disentangle imbalances in the gut bacteria in individuals with ME/CFS and IBS. ME/CFS is a complex, debilitating disorder characterized by extreme fatigue after exertion and other symptoms including muscle and joint pain, cognitive dysfunction, sleep disturbance, and orthostatic intolerance. Up to 90 percent of ME/CFS patients also have IBS.

The researchers followed 50 patients and 50 matched healthy controls recruited at four ME/CFS clinical sites. They tested for bacterial species in fecal samples, and for immune molecules in blood samples

They report:

“Individuals with ME/CFS have a distinct mix of gut bacteria and related metabolic disturbances that may influence the severity of their disease,” says co-lead investigator Dr. Dorottya Nagy-Szakal, postdoctoral research scientist at CII.

“Our analysis suggests that we may be able to subtype patients with ME/CFS by analyzing their fecal microbiome,” says co-lead investigator Dr. Brent L. Williams, assistant professor of Pathology and Cell Biology at CII. “Subtyping may provide clues to understanding differences in manifestations of disease.”

“Much like IBS, ME/CFS may involve a breakdown in the bidirectional communication between the brain and the gut mediated by bacteria, their metabolites, and the molecules they influence,” says senior author Dr. W. Ian Lipkin, director of CII and John Snow Professor of Epidemiology at Columbia’s Mailman School. “By identifying the specific bacteria involved, we are one step closer to more accurate diagnosis and targeted therapies.”

The study was supported by the Chronic Fatigue Initiative of the Hutchins Family Foundation; the National Institutes of Health Center for Research in Diagnostics and Discovery (AI109761); John, Cynthia, and Lisa Gunn; and anonymous donors through the Crowdfunding Microbe Discovery Project.